Modelling molecular structures / Alan Hinchliffe.

Title
  1. Modelling molecular structures / Alan Hinchliffe.
Published by
  1. Chichester ; New York : John Wiley, c2000.
Author
  1. Hinchliffe, Alan.

Items in the library and off-site

Filter by

Displaying 1 item

StatusFormatAccessCall numberItem location
StatusFormatAccessRequest in advanceCall numberQD480 .H56 2000Item locationOff-site

Details

Description
  1. xviii, 336 p. : ill.; 24 cm.
Summary
  1. "Modelling Molecular Structures, this newly updated edition is your guide through the myriad of applications for molecular modelling. This easy-to-read, illustrated text covers all ares of molecular modelling, including molecular dynamics, quantum mechanics, and the Hartree-Fock self-consistent field model, providing background information and critically discussing the latest techniques in the field." "Covering developments in the field since the first publication, this title also includes updated text and new material on: molecular dynamics and dealing with the solvent." "This title is an indispensable introduction for all chemists, materials scientists, molecular biologists, and researchers working in, and interested in, the field of molecular modelling."--Jacket.
Series statement
  1. Wiley series in theoretical chemistry
Uniform title
  1. Wiley series in theoretical chemistry.
Subject
  1. Models, Molecular
  2. Molecular Structure
  3. Molecules > Data processing
Contents
  1. 0 Prerequisites 1 -- 0.2 Branches of Mechanics 4 -- 0.3 Vectors, Vector Fields and Vector Calculus 4 -- 0.4 Vector Calculus 7 -- 0.5 Newton's Laws of Motion 11 -- 0.6 Basic Electrostatics 13 -- 0.7 Schrodinger Equation 16 -- 0.8 Systems of Units 20 -- 1 Molecular Mechanics 24 -- 1.1 Vibrational Motion 24 -- 1.2 Normal Modes of Vibration 28 -- 1.3 Quantum-Mechanical Treatment 29 -- 1.4 Taylor Expansion 35 -- 1.5 Morse Potential 36 -- 1.6 More Advanced Empirical Potentials 37 -- 1.7 Molecular Mechanics 38 -- 1.8 Professional Molecular Mechanics Force Fields 44 -- 1.9 A Sample MM Calculation: Aspirin 46 -- 1.10 Graphical User Interface 48 -- 1.11 General Features of Potential Energy Surfaces 51 -- 1.12 Other Properties 56 -- 1.13 Protein Docking 56 -- 1.14 Unanswered Questions 57 -- 2 Dynamics 58 -- 2.1 Equipartition of Energy 59 -- 2.2 Ensembles 60 -- 2.3 Boltzmann Distribution 60 -- 2.4 Molecular Dynamics 62 -- 2.5 Collection of Statistics 64 -- 2.6 Simulation of Systems 64 -- 2.7 Monte Carlo Method 69 -- 3 Hydrogen Molecule Ion 72 -- 3.1 Born--Oppenheimer Approximation 73 -- 3.2 LCAO Model 76 -- 3.3 Integral Evaluation 77 -- 3.4 Improving the Atomic Orbital 80 -- 3.5 More Advanced Calculations 81 -- 3.6 Visualization 82 -- 4 Hydrogen Molecule 85 -- 4.1 Non-Interacting Electron Model 87 -- 4.2 Valence Bond Model 88 -- 4.3 Indistinguishability 89 -- 4.4 Electron Spin 91 -- 4.5 Pauli Principle 91 -- 4.6 Dihydrogen Molecule 92 -- 4.7 Configuration Interaction 94 -- 4.8 LCAO--Molecular Orbital Model 95 -- 4.9 Comparison of Simple VB and LCAO Treatments 97 -- 4.10 Slater Determinants 97 -- 5 Electron Density 99 -- 5.1 General LCAO Case 102 -- 5.2 Population Analysis 103 -- 5.3 Density Functions 106 -- 6 Hartree-Fock Model 109 -- 6.1 LCAO Procedure 113 -- 6.2 Electronic Energy 117 -- 6.3 Koopmans Theorem 117 -- 6.4 Open-Shell Systems 118 -- 6.5 Unrestricted Hartree--Fock Theory 120 -- 6.6 J and K Operators 121 -- 7 Huckel Model 122 -- 7.2 Bond Lengths and the Huckel model 126 -- 7.3 Molecular Mechanics of [pi]-Electron Systems 127 -- 7.4 Alternant Hydrocarbons 127 -- 7.5 Treatment of Heteroatoms 128 -- 7.6 Extended Huckel Theory 129 -- 7.7 Nightmare of the Inner Shells 133 -- 7.8 But What is the Huckel Hamiltonian? 134 -- 8 Neglect of Differential Overlap Models 135 -- 8.1 [Pi]-electron Zero Differential Overlap Models 136 -- 8.2 Identity of the Basis Functions 143 -- 8.3 'All Valence Electron' NDO models 144 -- 9 Basis Sets 154 -- 9.1 Hydrogenic Orbitals 155 -- 9.2 Slater's Rules 157 -- 9.3 Clementi and Raimondi 158 -- 9.4 Gaussian Orbitals 161 -- 9.5 STO/nG Philosophy 164 -- 9.6 STO/4--31G Story 167 -- 9.7 Extended Basis Sets 168 -- 9.8 Diffuse and Polarization Functions 170 -- 9.9 Effective Core Potentials 171 -- 10 Ab Initio Packages 173 -- 10.1 Level of Theory 174 -- 10.2 Geometry Input 174 -- 10.3 An Ab Initio HF--LCAO Calculation 178 -- 10.4 Visualization 184 -- 11 Electron Correlation 186 -- 11.1 Configuration Interaction 189 -- 11.2 Perturbation Theory 197 -- 11.3 Moller-Plesset Perturbation Theory 199 -- 11.4 Dineon Pair Potential 201 -- 11.5 Multiconfiguration SCF 203 -- 11.6 Quadratic Configuration Interaction 206 -- 11.7 Resource Consumption 208 -- 12 Slater's X[alpha] Model 209 -- 12.1 Exchange Potential 211 -- 12.2 Drude Model 211 -- 12.3 Pauli's Model 212 -- 12.4 Thomas--Fermi Model 213 -- 12.5 Atomic X[alpha] Model 214 -- 12.6 Slater's Multiple Scattering X[alpha] Method for Molecules 215 -- 13 Density Functional Theory 218 -- 13.1 Hohenberg--Kohn Theorem 221 -- 13.2 Kohn--Sham Equations 224 -- 13.3 Local Density Approximation 225 -- 13.4 Beyond the Local Density Approximation 225 -- 13.5 Becke Exchange correction 225 -- 13.6 Lee--Yang--Parr Correlation Potential 226 -- 13.7 Quadrature 226 -- 13.8 A Typical Implementation 227 -- 14 Potential Energy Surfaces 230 -- 14.1 A Diatomic Molecule 231 -- 14.2 Characterizing points on a Potential Energy Surface 232 -- 14.3 Locating Stationary Points 234 -- 14.5 Steepest Descents 238 -- 14.6 Fletcher--Reeves Algorithm 238 -- 14.7 Hellman--Feynman Theorem 239 -- 14.8 Coupled Hartree--Fock (CPHF) Model 240 -- 14.9 Choice of Variables 241 -- 14.10 Normal Coordinates 245 -- 14.11 Searching for Transition States 249 -- 14.12 Surface-Fitting 249 -- 15 Dealing with the Solvent 252 -- 15.1 Langevin Dynamics 252 -- 15.2 Solvent Box 253 -- 15.3 Onsager Model 254 -- 15.4 Hybrid Quantum-Mechanical and Molecular Mechanical Methods 260 -- 16 Primary Properties and their Derivatives 265 -- 16.1 Electric Multipole Moments 266 -- 16.2 Multipole Expansion 269 -- 16.3 Charge Distribution in an External Field 271 -- 16.4 Implications of Brillouin's Theorem 271 -- 16.5 Electric Dipole Moments 272 -- 16.6 Analytical Gradients 276 -- 16.7 Electric Quadrupole Moments 276 -- 16.8 Electric Field Gradients 277 -- 16.9 Electrostatic Potential 279 -- 17 Induced Properties 282 -- 17.1 Induced Dipoles 282 -- 17.2 Energy of Charge Distribution in Field 283 -- 17.3 Multipole Polarizabilities 284 -- 17.4 Polarizability Derivatives 285 -- 17.5 A Classical Model of Dipole Polarizability 285 -- 17.6 Quantum-Mechanical Calculations of Static Polarizabilities 287 -- 17.7 Derivatives 290 -- 17.8 Interaction Polarizabilities 292 -- 17.9 Hamiltonian 294 -- 17.10 Magnetizabilities 296 -- 17.11 Gauge Invariance 296 -- 17.12 Non-Linear Optical Properties 298 -- 17.13 Time-Dependent Perturbation Theory 298 -- 17.14 Time-Dependent Hartree--Fock Theory 300 -- 18 Miscellany 302 -- 18.1 Floating Spherical Gaussian (FSGO) Model 302 -- 18.2 Hyperfine Interactions 304 -- 18.3 Atoms in Molecules 316 -- 18.4 Thermodynamic Quantities 319.
Owning institution
  1. Harvard Library
Bibliography (note)
  1. Includes bibliographical references (p. [325]-329) and index.
Processing action (note)
  1. committed to retain