Research Catalog

Optical control of molecular dynamics

Title
  1. Optical control of molecular dynamics / Stuart A. Rice, Meishan Zhao.
Published by
  1. New York : John Wiley, ©2000.
Author
  1. Rice, Stuart Alan, 1932-

Items in the library and off-site

Filter by

Displaying 1 item

StatusFormatAccessCall numberItem location
Status
Request for on-site useRequest scan
How do I pick up this item and when will it be ready?
FormatTextAccessUse in libraryCall numberQD461 .R473 2000Item locationOff-site

Details

Additional authors
  1. Zhao, Meishan.
Description
  1. xv, 437 pages : illustrations; 25 cm
Series statement
  1. The George Fisher Baker non-resident lectureship in chemistry at Cornell University
Uniform title
  1. George Fisher Baker non-resident lectureship in chemistry at Cornell University.
Subject
  1. Molecular dynamics
  2. Lasers in chemistry
  3. Lasers in chemistry
  4. Molecular dynamics
  5. Molekulardynamik
  6. Laser
  7. MOLECULAR DYNAMICS
  8. PHYSICAL CHEMISTRY
  9. LASERS
  10. LASER APPLICATIONS
  11. OPTICAL CONTROL
  12. Dynamique moléculaire
  13. Réactions chimiques
  14. Réactivité (chimie)
Contents
  1. 2 How Much Control is Attainable? 15 -- 2.1 Complete Controllability 18 -- 2.2 Control of Evolution in a Partitioned Set of States 19 -- 2.3 When Does an Optimal Control Field Exist? 22 -- 2.3.2 Bounded quantum systems 24 -- 2.3.3 Generalization of the Peirce-Dahleh-Rabitz analysis 26 -- 2.3.4 Control of evolution in the subset of discrete states 28 -- 2.3.5 Control of evolution in the spectrum of resonances 30 -- 2.3.6 Control of evolution in scattering states 32 -- 3 Pulse Timing Control of Molecular Dynamics 39 -- 3.1 Formulation of the Tannor-Rice Method 40 -- 3.1.2 Tannor-Rice control method 43 -- 3.2 Experimental Realizations of Pulse Timing Control of Dynamics 58 -- 3.2.1 Control of the reactivity of Na[subscript 2] 58 -- 3.2.2 Control of the reaction Xe + I[subscript 2] [right arrow] XeI + I 63 -- 3.2.3 Control of the photofragmentation of NaI 65 -- 3.2.4 Pulse timing control and inverse dynamics 67 -- 3.2.5 Control of the lifetimes of Rydberg states 70 -- 3.2.6 Control with phase-locked pump and dump pulses 74 -- 3.2.7 Modulation of the excited-state population 78 -- 3.2.8 A harmonic model 79 -- 3.2.9 Experimental studies of I[subscript 2] 83 -- 3.2.10 Control of rotational wavepacket motion in Li[subscript 2] 86 -- 3.3 Photon locking 92 -- 4 Multiple-Path Interference Control of Molecular Dynamics 99 -- 4.1 Brumer-Shapiro Control Method 99 -- 4.2 One-photon/three-photon interference 100 -- 4.3 Example: Iodine Bromide photodissociation 103 -- 4.4 Experimental Realizations of Multiple-Path Control of Dynamics 105 -- 4.4.2 HI photofragmentation and photoionization 107 -- 4.4.3 Origin of the phase lag 109 -- 4.5 A Different View of Pulse Timing Control of Molecular Dynamics 114 -- 4.6 Pulsed Incoherent Interference Control 119 -- 4.7 Experimental Realizations of Pulsed Incoherent Interference Control 126 -- 5 STIRAP Control of Molecular Dynamics 133 -- 5.2 Three-State System Population Dynamics 135 -- 5.3 Experimental Realizations of STIRAP Control 138 -- 5.3.1 STIRAP control of population transfer in Ne* 138 -- 5.3.2 STIRAP control of population transfer in SO[subscript 2] 141 -- 5.4 Three-State Systems with a Resonant Intermediate State 142 -- 5.5 Four-State Systems 149 -- 5.6 Five-State Systems 157 -- 5.6.1 Practical considerations 161 -- 5.7 Extended STIRAP Control of the Photodissociation of Sodium dimer 162 -- 5.7.1 Counterintuitively ordered excitation of Na[subscript 2] 164 -- 5.7.2 Simulations of intuitively ordered excitation of Na[subscript 2] 167 -- 5.7.3 Comparison with experimental results 170 -- 6 Optimal Field Control of Molecular Dynamics I 177 -- 6.2 Formal Considerations 178 -- 6.2.1 Example: state-to-state population transfer in a multilevel system 180 -- 6.2.2 Example: enhanced photofragmentation of a diatomic molecule 183 -- 6.2.3 Example: ABC [right arrow] AB + C versus ABC [right arrow] AC + B 191 -- 6.3 Optimization with a time-dependent penalty function 195 -- 6.4 Density matrix formalism of control theory 200 -- 6.4.1 Simultaneous optimization of pump and dump pulse shapes 204 -- 7 Optimal Field Control of Molecular Dynamics II 213 -- 7.2 Feedback influenced control 215 -- 7.3 Adaptive learning control 217 -- 7.4 Experimental realizations of optimal field control 223 -- 7.4.1 Feedback informed pulse timing control of the photofragmentation of CsCl 223 -- 7.4.2 Enhanced fluorescence from large molecules 226 -- 7.4.3 Photofragmentation of CpFe(CO)[subscript 2]Cl and Fe(CO)[subscript 5] 228 -- 7.5 Artificial intelligence-least-cost searching 230 -- 7.5.2 Example: HCN isomerization 232 -- 8 Generic Aspects of the Control of Dynamics 241 -- 8.1 Two-state system 242 -- 8.2 n-state system 247 -- 8.3 Globally optimum control field 249 -- 8.3.1 Example: laser cooling of the vibrational motion ofa molecules 251 -- 9 Reduced Space Analyses 263 -- 9.2 A Reduced Representation in State Space 263 -- 9.2.1 Example: reduction of a three-state system to a two-state system 268 -- 9.2.2 Example: a bright-state expansion 274 -- 9.3 A Reduced Representation in Coordinate Space 276 -- 9.3.1 Example: HCN isomerization 281 -- 9.4 Reduction by Factorization: Time-Dependent Hartree Approximation 286 -- 9.4.1 Example: a two-oscillator system 289 -- 9.5 Inverse Control of Dynamics: Tracking 294 -- 9.5.1 Example: selective bond dissociation in a linear triatomic molecule 296 -- 10 Some Other Control Methods 303 -- 10.1 Locally Optimized Sequential Excitation Control 303 -- 10.1.1 Example: selective excitation of a bound state of OH 304 -- 10.1.2 Example: controlled fragmentation of OH 312 -- 10.2 Interference-Induced Control in Intense Fields 313 -- 10.3 Pulse Length Control Using Intense Fields 318 -- 10.4 Real-time control of electronic motion in a molecule 324 -- 10.5 Impulsive Excitation 329 -- 10.5.1 Excitation of coherent vibrational motion on a ground-state potential energy surface 330 -- 10.5.2 Chirped pulse impulsive stimulated Raman excitation 336 -- 10.6 Control by Sequential Sweeping of Time-dependent Nonadiabatic Transitions 337 -- 10.6.1 Floquet representation 337 -- 10.6.2 Example: controlled transfer of population between bound states of CO 340 -- 10.6.3 Example: enhanced photofragmentation of HF 342 -- 10.6.4 Control via sequential nonadiabatic transitions 344 -- 10.6.5 Example: control of the ring-puckering isomerization of trimethylenimine 348 -- Appendix A Wavepacket Dynamics 365 -- A.1 Elementary properties of wavepackets 365 -- A.2 Some applications of wavepacket methodology 373 -- A.2.1 Wavepacket analysis of coherent anti-Stokes Raman spectroscopy 374 -- A.2.2 Photon echoes in a two-level system 379 -- A.2.3 Photon echoes in a multilevel system 382 -- A.3 Numerical analysis of wavepacket dynamics 387 -- A.4 Grid-Based Representation of the Wavefunction 387 -- A.4.1 Fourier-grid method 388 -- A.4.2 Discrete-variable representation 390 -- A.5 Time Propagation Schemes 391 -- A.5.1 Method of finite differences in the time domain 391 -- A.5.2 Split-operator method 392 -- A.5.3 Chebychev method 394 -- A.5.4 Lanczos method 395 -- A.5.5 (T, t') method 396 -- Appendix B Numerical Methods in Optimal Control 403 -- B.1 Global optimization 403 -- B.1.1 Conjugate gradient search method 404 -- B.1.2 Krotov method 407 -- B.2 Restricted optimization 411 -- B.3 Optimization by use of tracking 415.
Owning institution
  1. Princeton University Library
Note
  1. "A Wiley-Interscience publication."
Bibliography (note)
  1. Includes bibliographical references and index.