Optical control of molecular dynamics
- Title
- Optical control of molecular dynamics / Stuart A. Rice, Meishan Zhao.
- Published by
- New York : John Wiley, ©2000.
- Author
Items in the library and off-site
Displaying 1 item
Status | Format | Access | Call number | Item location |
---|---|---|---|---|
Status | FormatText | AccessUse in library | Call numberQD461 .R473 2000 | Item locationOff-site |
Details
- Additional authors
- Description
- xv, 437 pages : illustrations; 25 cm
- Series statement
- The George Fisher Baker non-resident lectureship in chemistry at Cornell University
- Uniform title
- George Fisher Baker non-resident lectureship in chemistry at Cornell University.
- Subject
- Contents
- 2 How Much Control is Attainable? 15 -- 2.1 Complete Controllability 18 -- 2.2 Control of Evolution in a Partitioned Set of States 19 -- 2.3 When Does an Optimal Control Field Exist? 22 -- 2.3.2 Bounded quantum systems 24 -- 2.3.3 Generalization of the Peirce-Dahleh-Rabitz analysis 26 -- 2.3.4 Control of evolution in the subset of discrete states 28 -- 2.3.5 Control of evolution in the spectrum of resonances 30 -- 2.3.6 Control of evolution in scattering states 32 -- 3 Pulse Timing Control of Molecular Dynamics 39 -- 3.1 Formulation of the Tannor-Rice Method 40 -- 3.1.2 Tannor-Rice control method 43 -- 3.2 Experimental Realizations of Pulse Timing Control of Dynamics 58 -- 3.2.1 Control of the reactivity of Na[subscript 2] 58 -- 3.2.2 Control of the reaction Xe + I[subscript 2] [right arrow] XeI + I 63 -- 3.2.3 Control of the photofragmentation of NaI 65 -- 3.2.4 Pulse timing control and inverse dynamics 67 -- 3.2.5 Control of the lifetimes of Rydberg states 70 -- 3.2.6 Control with phase-locked pump and dump pulses 74 -- 3.2.7 Modulation of the excited-state population 78 -- 3.2.8 A harmonic model 79 -- 3.2.9 Experimental studies of I[subscript 2] 83 -- 3.2.10 Control of rotational wavepacket motion in Li[subscript 2] 86 -- 3.3 Photon locking 92 -- 4 Multiple-Path Interference Control of Molecular Dynamics 99 -- 4.1 Brumer-Shapiro Control Method 99 -- 4.2 One-photon/three-photon interference 100 -- 4.3 Example: Iodine Bromide photodissociation 103 -- 4.4 Experimental Realizations of Multiple-Path Control of Dynamics 105 -- 4.4.2 HI photofragmentation and photoionization 107 -- 4.4.3 Origin of the phase lag 109 -- 4.5 A Different View of Pulse Timing Control of Molecular Dynamics 114 -- 4.6 Pulsed Incoherent Interference Control 119 -- 4.7 Experimental Realizations of Pulsed Incoherent Interference Control 126 -- 5 STIRAP Control of Molecular Dynamics 133 -- 5.2 Three-State System Population Dynamics 135 -- 5.3 Experimental Realizations of STIRAP Control 138 -- 5.3.1 STIRAP control of population transfer in Ne* 138 -- 5.3.2 STIRAP control of population transfer in SO[subscript 2] 141 -- 5.4 Three-State Systems with a Resonant Intermediate State 142 -- 5.5 Four-State Systems 149 -- 5.6 Five-State Systems 157 -- 5.6.1 Practical considerations 161 -- 5.7 Extended STIRAP Control of the Photodissociation of Sodium dimer 162 -- 5.7.1 Counterintuitively ordered excitation of Na[subscript 2] 164 -- 5.7.2 Simulations of intuitively ordered excitation of Na[subscript 2] 167 -- 5.7.3 Comparison with experimental results 170 -- 6 Optimal Field Control of Molecular Dynamics I 177 -- 6.2 Formal Considerations 178 -- 6.2.1 Example: state-to-state population transfer in a multilevel system 180 -- 6.2.2 Example: enhanced photofragmentation of a diatomic molecule 183 -- 6.2.3 Example: ABC [right arrow] AB + C versus ABC [right arrow] AC + B 191 -- 6.3 Optimization with a time-dependent penalty function 195 -- 6.4 Density matrix formalism of control theory 200 -- 6.4.1 Simultaneous optimization of pump and dump pulse shapes 204 -- 7 Optimal Field Control of Molecular Dynamics II 213 -- 7.2 Feedback influenced control 215 -- 7.3 Adaptive learning control 217 -- 7.4 Experimental realizations of optimal field control 223 -- 7.4.1 Feedback informed pulse timing control of the photofragmentation of CsCl 223 -- 7.4.2 Enhanced fluorescence from large molecules 226 -- 7.4.3 Photofragmentation of CpFe(CO)[subscript 2]Cl and Fe(CO)[subscript 5] 228 -- 7.5 Artificial intelligence-least-cost searching 230 -- 7.5.2 Example: HCN isomerization 232 -- 8 Generic Aspects of the Control of Dynamics 241 -- 8.1 Two-state system 242 -- 8.2 n-state system 247 -- 8.3 Globally optimum control field 249 -- 8.3.1 Example: laser cooling of the vibrational motion ofa molecules 251 -- 9 Reduced Space Analyses 263 -- 9.2 A Reduced Representation in State Space 263 -- 9.2.1 Example: reduction of a three-state system to a two-state system 268 -- 9.2.2 Example: a bright-state expansion 274 -- 9.3 A Reduced Representation in Coordinate Space 276 -- 9.3.1 Example: HCN isomerization 281 -- 9.4 Reduction by Factorization: Time-Dependent Hartree Approximation 286 -- 9.4.1 Example: a two-oscillator system 289 -- 9.5 Inverse Control of Dynamics: Tracking 294 -- 9.5.1 Example: selective bond dissociation in a linear triatomic molecule 296 -- 10 Some Other Control Methods 303 -- 10.1 Locally Optimized Sequential Excitation Control 303 -- 10.1.1 Example: selective excitation of a bound state of OH 304 -- 10.1.2 Example: controlled fragmentation of OH 312 -- 10.2 Interference-Induced Control in Intense Fields 313 -- 10.3 Pulse Length Control Using Intense Fields 318 -- 10.4 Real-time control of electronic motion in a molecule 324 -- 10.5 Impulsive Excitation 329 -- 10.5.1 Excitation of coherent vibrational motion on a ground-state potential energy surface 330 -- 10.5.2 Chirped pulse impulsive stimulated Raman excitation 336 -- 10.6 Control by Sequential Sweeping of Time-dependent Nonadiabatic Transitions 337 -- 10.6.1 Floquet representation 337 -- 10.6.2 Example: controlled transfer of population between bound states of CO 340 -- 10.6.3 Example: enhanced photofragmentation of HF 342 -- 10.6.4 Control via sequential nonadiabatic transitions 344 -- 10.6.5 Example: control of the ring-puckering isomerization of trimethylenimine 348 -- Appendix A Wavepacket Dynamics 365 -- A.1 Elementary properties of wavepackets 365 -- A.2 Some applications of wavepacket methodology 373 -- A.2.1 Wavepacket analysis of coherent anti-Stokes Raman spectroscopy 374 -- A.2.2 Photon echoes in a two-level system 379 -- A.2.3 Photon echoes in a multilevel system 382 -- A.3 Numerical analysis of wavepacket dynamics 387 -- A.4 Grid-Based Representation of the Wavefunction 387 -- A.4.1 Fourier-grid method 388 -- A.4.2 Discrete-variable representation 390 -- A.5 Time Propagation Schemes 391 -- A.5.1 Method of finite differences in the time domain 391 -- A.5.2 Split-operator method 392 -- A.5.3 Chebychev method 394 -- A.5.4 Lanczos method 395 -- A.5.5 (T, t') method 396 -- Appendix B Numerical Methods in Optimal Control 403 -- B.1 Global optimization 403 -- B.1.1 Conjugate gradient search method 404 -- B.1.2 Krotov method 407 -- B.2 Restricted optimization 411 -- B.3 Optimization by use of tracking 415.
- Owning institution
- Princeton University Library
- Note
- "A Wiley-Interscience publication."
- Bibliography (note)
- Includes bibliographical references and index.